Eat Plants and Dance

Some new research on the innate nature of Rhythm in the Body:

Even if you can’t keep a beat, your brain can. “The brain absolutely has rhythm,” says , a neuroscientist at Carnegie Mellon University in Pittsburgh. When you concentrate, Urban says, your brain produces rapid, rhythmic electrical impulses called gamma waves. When you relax, it generates much slower alpha waves.

The internal cadences of the brain and nervous system appear to play an important role in everything from walking to thinking, Urban says. And abnormal rhythms, he says, have been associated with problems including schizophrenia, epilepsy, autism and Parkinson’s disease. The rhythms of the brain begin with the firing patterns of individual brain cells. Some types of cells tend to fire as slowly as once a second, while others tend to fire more than a hundred times as fast. “They’re little clocks,” Urban says. “They have an intrinsic frequency.”

All those different beats in the brain could produce chaos. One reason they don’t is that groups of brain cells synchronize when they need to get something done. So, when a mouse is exploring a new place, cells begin firing together in areas of the brain involved in navigation and memory.

Urban has been studying how brain cells achieve this synchrony and has found evidence that it works a bit like a room full of people clapping their hands. At first, each person claps to his own beat. But if you ask them to clap together, they’ll start listening to their neighbors and adjusting their rhythms until the claps are synchronized.

Brain cells appear to do something very similar, Urban says. There’s still debate about why this synchronization takes place. But many scientists believe it’s important, because they know that when any two cells fire together, the connections between them get stronger, a process that is critical to learning and memory.


The Rhythms of Digestion and Dance

Of course, rhythms in the brain and nervous system also control many rhythms in the body. Among these rhythms are the repetitive muscle contractions responsible for functions as basic as digestion and as elevated as dance, says , a biology professor at Brandeis University


Dance And The Brain

It turns out that the stomach of a crab is a very, very complicated mechanical device,” driven by the precisely choreographed contractions of 42 sets of muscles, Marder says. And the way a crab processes lunch has a lot in common with the way a ballerina does pliés, she says. Both actions rely on circuits of nerve cells that fire in a sequence, activating one muscle, then another, then another until the pattern repeats.

Rhythmic sequences are also required to move around, says , a brain scientist at Columbia University. Walking, for example, requires repeatedly lifting a foot up, putting it down, and pushing it back. Fish swish a tail from side to side to swim. “It’s sort of hard to imagine any way of doing continuous locomotion that wasn’t built on a rhythmic underpinning,” Churchland says.

Many of these rhythms are maintained by cells in the nervous system, not the brain, Churchland says. This means the brain can use a kind of shorthand to control motion. So instead of sending instructions for each muscle contraction needed to take a step, the brain sends a general command: “Activate the walking rhythm.”

Diseases including epilepsy, schizophrenia and Parkinson’s can disrupt the brain’s normal rhythms. People with Parkinson’s disease, for example, tend to develop abnormal firing patterns in their brains that result in tremor and other difficulties with movement.

Surprisingly, these symptoms of Parkinson’s are greatly reduced when patients respond to the external rhythms of music and dance.

Article can be found at – NPR: Your Brain’s Got Rhythm, and Syncs When You Think

Leave a Reply

Your email address will not be published. Required fields are marked *